library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Frasdorf <- sunrise.set(47.80271459999999,12.28550180000002, "2023/01/01", timezone="MET", num.days=370) sunrise <- Frasdorf$sunrise sunset <- Frasdorf$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Frasdorf["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Frasdorf["ss"] <- as.POSIXct(sunset, format = "%H:%M") Frasdorf["timestamp"] <- align.time(Frasdorf$sunrise, 60*10) Frasdorf <- Frasdorf[c("timestamp", "sr", "ss")] locsrss <- ggplot(Frasdorf, aes(x=Frasdorf$timestamp)) + geom_line(aes(y=Frasdorf$sr)) + geom_line(aes(y=Frasdorf$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Frasdorf 2023", x = "Datum", y = "Zeit") pdf("Frasdorf_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Frasdorf_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Frasdorf["Sonnenaufgang"] <- strftime(Frasdorf$sr, format="%H:%M") Frasdorf["Sonnenuntergang"] <- strftime(Frasdorf$ss, format="%H:%M") write.table(Frasdorf, file="Frasdorf_SaSu.csv", dec=',', sep=';', row.names=FALSE)