library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Frankfurt_Oder <- sunrise.set(52.342491,14.53813, "2023/01/01", timezone="MET", num.days=370) sunrise <- Frankfurt_Oder$sunrise sunset <- Frankfurt_Oder$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Frankfurt_Oder["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Frankfurt_Oder["ss"] <- as.POSIXct(sunset, format = "%H:%M") Frankfurt_Oder["timestamp"] <- align.time(Frankfurt_Oder$sunrise, 60*10) Frankfurt_Oder <- Frankfurt_Oder[c("timestamp", "sr", "ss")] locsrss <- ggplot(Frankfurt_Oder, aes(x=Frankfurt_Oder$timestamp)) + geom_line(aes(y=Frankfurt_Oder$sr)) + geom_line(aes(y=Frankfurt_Oder$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Frankfurt_Oder 2023", x = "Datum", y = "Zeit") pdf("Frankfurt_Oder_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Frankfurt_Oder_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Frankfurt_Oder["Sonnenaufgang"] <- strftime(Frankfurt_Oder$sr, format="%H:%M") Frankfurt_Oder["Sonnenuntergang"] <- strftime(Frankfurt_Oder$ss, format="%H:%M") write.table(Frankfurt_Oder, file="Frankfurt_Oder_SaSu.csv", dec=',', sep=';', row.names=FALSE)