library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Flammersfeld <- sunrise.set(50.6474944,7.527637099999993, "2023/01/01", timezone="MET", num.days=370) sunrise <- Flammersfeld$sunrise sunset <- Flammersfeld$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Flammersfeld["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Flammersfeld["ss"] <- as.POSIXct(sunset, format = "%H:%M") Flammersfeld["timestamp"] <- align.time(Flammersfeld$sunrise, 60*10) Flammersfeld <- Flammersfeld[c("timestamp", "sr", "ss")] locsrss <- ggplot(Flammersfeld, aes(x=Flammersfeld$timestamp)) + geom_line(aes(y=Flammersfeld$sr)) + geom_line(aes(y=Flammersfeld$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Flammersfeld 2023", x = "Datum", y = "Zeit") pdf("Flammersfeld_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Flammersfeld_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Flammersfeld["Sonnenaufgang"] <- strftime(Flammersfeld$sr, format="%H:%M") Flammersfeld["Sonnenuntergang"] <- strftime(Flammersfeld$ss, format="%H:%M") write.table(Flammersfeld, file="Flammersfeld_SaSu.csv", dec=',', sep=';', row.names=FALSE)