library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Filippstad <- sunrise.set(59.72615841282299,14.222287050659133, "2023/01/01", timezone="MET", num.days=370) sunrise <- Filippstad$sunrise sunset <- Filippstad$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Filippstad["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Filippstad["ss"] <- as.POSIXct(sunset, format = "%H:%M") Filippstad["timestamp"] <- align.time(Filippstad$sunrise, 60*10) Filippstad <- Filippstad[c("timestamp", "sr", "ss")] locsrss <- ggplot(Filippstad, aes(x=Filippstad$timestamp)) + geom_line(aes(y=Filippstad$sr)) + geom_line(aes(y=Filippstad$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Filippstad 2023", x = "Datum", y = "Zeit") pdf("Filippstad_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Filippstad_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Filippstad["Sonnenaufgang"] <- strftime(Filippstad$sr, format="%H:%M") Filippstad["Sonnenuntergang"] <- strftime(Filippstad$ss, format="%H:%M") write.table(Filippstad, file="Filippstad_SaSu.csv", dec=',', sep=';', row.names=FALSE)