library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Fiebing <- sunrise.set(53.3528381,7.6774491999999555, "2023/01/01", timezone="MET", num.days=370) sunrise <- Fiebing$sunrise sunset <- Fiebing$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Fiebing["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Fiebing["ss"] <- as.POSIXct(sunset, format = "%H:%M") Fiebing["timestamp"] <- align.time(Fiebing$sunrise, 60*10) Fiebing <- Fiebing[c("timestamp", "sr", "ss")] locsrss <- ggplot(Fiebing, aes(x=Fiebing$timestamp)) + geom_line(aes(y=Fiebing$sr)) + geom_line(aes(y=Fiebing$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Fiebing 2023", x = "Datum", y = "Zeit") pdf("Fiebing_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Fiebing_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Fiebing["Sonnenaufgang"] <- strftime(Fiebing$sr, format="%H:%M") Fiebing["Sonnenuntergang"] <- strftime(Fiebing$ss, format="%H:%M") write.table(Fiebing, file="Fiebing_SaSu.csv", dec=',', sep=';', row.names=FALSE)