library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Exmouth <- sunrise.set(-21.9307242,114.1223888, "2023/01/01", timezone="MET", num.days=370) sunrise <- Exmouth$sunrise sunset <- Exmouth$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Exmouth["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Exmouth["ss"] <- as.POSIXct(sunset, format = "%H:%M") Exmouth["timestamp"] <- align.time(Exmouth$sunrise, 60*10) Exmouth <- Exmouth[c("timestamp", "sr", "ss")] locsrss <- ggplot(Exmouth, aes(x=Exmouth$timestamp)) + geom_line(aes(y=Exmouth$sr)) + geom_line(aes(y=Exmouth$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Exmouth 2023", x = "Datum", y = "Zeit") pdf("Exmouth_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Exmouth_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Exmouth["Sonnenaufgang"] <- strftime(Exmouth$sr, format="%H:%M") Exmouth["Sonnenuntergang"] <- strftime(Exmouth$ss, format="%H:%M") write.table(Exmouth, file="Exmouth_SaSu.csv", dec=',', sep=';', row.names=FALSE)