library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Euskirchen <- sunrise.set(50.6574392,6.7899945, "2023/01/01", timezone="MET", num.days=370) sunrise <- Euskirchen$sunrise sunset <- Euskirchen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Euskirchen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Euskirchen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Euskirchen["timestamp"] <- align.time(Euskirchen$sunrise, 60*10) Euskirchen <- Euskirchen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Euskirchen, aes(x=Euskirchen$timestamp)) + geom_line(aes(y=Euskirchen$sr)) + geom_line(aes(y=Euskirchen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Euskirchen 2023", x = "Datum", y = "Zeit") pdf("Euskirchen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Euskirchen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Euskirchen["Sonnenaufgang"] <- strftime(Euskirchen$sr, format="%H:%M") Euskirchen["Sonnenuntergang"] <- strftime(Euskirchen$ss, format="%H:%M") write.table(Euskirchen, file="Euskirchen_SaSu.csv", dec=',', sep=';', row.names=FALSE)