library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Eschweiler <- sunrise.set(50.8107322,6.263075, "2023/01/01", timezone="MET", num.days=370) sunrise <- Eschweiler$sunrise sunset <- Eschweiler$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Eschweiler["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Eschweiler["ss"] <- as.POSIXct(sunset, format = "%H:%M") Eschweiler["timestamp"] <- align.time(Eschweiler$sunrise, 60*10) Eschweiler <- Eschweiler[c("timestamp", "sr", "ss")] locsrss <- ggplot(Eschweiler, aes(x=Eschweiler$timestamp)) + geom_line(aes(y=Eschweiler$sr)) + geom_line(aes(y=Eschweiler$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Eschweiler 2023", x = "Datum", y = "Zeit") pdf("Eschweiler_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Eschweiler_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Eschweiler["Sonnenaufgang"] <- strftime(Eschweiler$sr, format="%H:%M") Eschweiler["Sonnenuntergang"] <- strftime(Eschweiler$ss, format="%H:%M") write.table(Eschweiler, file="Eschweiler_SaSu.csv", dec=',', sep=';', row.names=FALSE)