library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Es_pego <- sunrise.set(38.844222,-0.114509, "2023/01/01", timezone="MET", num.days=370) sunrise <- Es_pego$sunrise sunset <- Es_pego$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Es_pego["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Es_pego["ss"] <- as.POSIXct(sunset, format = "%H:%M") Es_pego["timestamp"] <- align.time(Es_pego$sunrise, 60*10) Es_pego <- Es_pego[c("timestamp", "sr", "ss")] locsrss <- ggplot(Es_pego, aes(x=Es_pego$timestamp)) + geom_line(aes(y=Es_pego$sr)) + geom_line(aes(y=Es_pego$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Es_pego 2023", x = "Datum", y = "Zeit") pdf("Es_pego_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Es_pego_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Es_pego["Sonnenaufgang"] <- strftime(Es_pego$sr, format="%H:%M") Es_pego["Sonnenuntergang"] <- strftime(Es_pego$ss, format="%H:%M") write.table(Es_pego, file="Es_pego_SaSu.csv", dec=',', sep=';', row.names=FALSE)