library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Erding <- sunrise.set(48.3114648,11.918875800000023, "2022/01/01", timezone="MET", num.days=370) sunrise <- Erding$sunrise sunset <- Erding$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Erding["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Erding["ss"] <- as.POSIXct(sunset, format = "%H:%M") Erding["timestamp"] <- align.time(Erding$sunrise, 60*10) Erding <- Erding[c("timestamp", "sr", "ss")] locsrss <- ggplot(Erding, aes(x=Erding$timestamp)) + geom_line(aes(y=Erding$sr)) + geom_line(aes(y=Erding$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Erding 2022", x = "Datum", y = "Zeit") pdf("Erding_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Erding_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Erding["Sonnenaufgang"] <- strftime(Erding$sr, format="%H:%M") Erding["Sonnenuntergang"] <- strftime(Erding$ss, format="%H:%M") write.table(Erding, file="Erding_SaSu.csv", dec=',', sep=';', row.names=FALSE)