library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) En_bokek <- sunrise.set(31.205117579477648,35.347548112081085, "2023/01/01", timezone="MET", num.days=370) sunrise <- En_bokek$sunrise sunset <- En_bokek$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") En_bokek["sr"] <- as.POSIXct(sunrise, format = "%H:%M") En_bokek["ss"] <- as.POSIXct(sunset, format = "%H:%M") En_bokek["timestamp"] <- align.time(En_bokek$sunrise, 60*10) En_bokek <- En_bokek[c("timestamp", "sr", "ss")] locsrss <- ggplot(En_bokek, aes(x=En_bokek$timestamp)) + geom_line(aes(y=En_bokek$sr)) + geom_line(aes(y=En_bokek$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - En_bokek 2023", x = "Datum", y = "Zeit") pdf("En_bokek_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="En_bokek_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() En_bokek["Sonnenaufgang"] <- strftime(En_bokek$sr, format="%H:%M") En_bokek["Sonnenuntergang"] <- strftime(En_bokek$ss, format="%H:%M") write.table(En_bokek, file="En_bokek_SaSu.csv", dec=',', sep=';', row.names=FALSE)