library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Echterdingen <- sunrise.set(48.69432477370376,9.169839303393587, "2023/01/01", timezone="MET", num.days=370) sunrise <- Echterdingen$sunrise sunset <- Echterdingen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Echterdingen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Echterdingen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Echterdingen["timestamp"] <- align.time(Echterdingen$sunrise, 60*10) Echterdingen <- Echterdingen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Echterdingen, aes(x=Echterdingen$timestamp)) + geom_line(aes(y=Echterdingen$sr)) + geom_line(aes(y=Echterdingen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Echterdingen 2023", x = "Datum", y = "Zeit") pdf("Echterdingen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Echterdingen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Echterdingen["Sonnenaufgang"] <- strftime(Echterdingen$sr, format="%H:%M") Echterdingen["Sonnenuntergang"] <- strftime(Echterdingen$ss, format="%H:%M") write.table(Echterdingen, file="Echterdingen_SaSu.csv", dec=',', sep=';', row.names=FALSE)