library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Eberstalzell <- sunrise.set(48.0439107,13.9815714, "2023/01/01", timezone="MET", num.days=370) sunrise <- Eberstalzell$sunrise sunset <- Eberstalzell$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Eberstalzell["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Eberstalzell["ss"] <- as.POSIXct(sunset, format = "%H:%M") Eberstalzell["timestamp"] <- align.time(Eberstalzell$sunrise, 60*10) Eberstalzell <- Eberstalzell[c("timestamp", "sr", "ss")] locsrss <- ggplot(Eberstalzell, aes(x=Eberstalzell$timestamp)) + geom_line(aes(y=Eberstalzell$sr)) + geom_line(aes(y=Eberstalzell$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Eberstalzell 2023", x = "Datum", y = "Zeit") pdf("Eberstalzell_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Eberstalzell_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Eberstalzell["Sonnenaufgang"] <- strftime(Eberstalzell$sr, format="%H:%M") Eberstalzell["Sonnenuntergang"] <- strftime(Eberstalzell$ss, format="%H:%M") write.table(Eberstalzell, file="Eberstalzell_SaSu.csv", dec=',', sep=';', row.names=FALSE)