library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Dornbirn <- sunrise.set(47.4124,9.74378999999999, "2023/01/01", timezone="MET", num.days=370) sunrise <- Dornbirn$sunrise sunset <- Dornbirn$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Dornbirn["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Dornbirn["ss"] <- as.POSIXct(sunset, format = "%H:%M") Dornbirn["timestamp"] <- align.time(Dornbirn$sunrise, 60*10) Dornbirn <- Dornbirn[c("timestamp", "sr", "ss")] locsrss <- ggplot(Dornbirn, aes(x=Dornbirn$timestamp)) + geom_line(aes(y=Dornbirn$sr)) + geom_line(aes(y=Dornbirn$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Dornbirn 2023", x = "Datum", y = "Zeit") pdf("Dornbirn_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Dornbirn_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Dornbirn["Sonnenaufgang"] <- strftime(Dornbirn$sr, format="%H:%M") Dornbirn["Sonnenuntergang"] <- strftime(Dornbirn$ss, format="%H:%M") write.table(Dornbirn, file="Dornbirn_SaSu.csv", dec=',', sep=';', row.names=FALSE)