library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Ditzingen <- sunrise.set(48.8264662,9.067556400000058, "2023/01/01", timezone="MET", num.days=370) sunrise <- Ditzingen$sunrise sunset <- Ditzingen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Ditzingen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Ditzingen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Ditzingen["timestamp"] <- align.time(Ditzingen$sunrise, 60*10) Ditzingen <- Ditzingen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Ditzingen, aes(x=Ditzingen$timestamp)) + geom_line(aes(y=Ditzingen$sr)) + geom_line(aes(y=Ditzingen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Ditzingen 2023", x = "Datum", y = "Zeit") pdf("Ditzingen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Ditzingen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Ditzingen["Sonnenaufgang"] <- strftime(Ditzingen$sr, format="%H:%M") Ditzingen["Sonnenuntergang"] <- strftime(Ditzingen$ss, format="%H:%M") write.table(Ditzingen, file="Ditzingen_SaSu.csv", dec=',', sep=';', row.names=FALSE)