library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Dittingen <- sunrise.set(47.4420708,7.4962108, "2023/01/01", timezone="MET", num.days=370) sunrise <- Dittingen$sunrise sunset <- Dittingen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Dittingen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Dittingen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Dittingen["timestamp"] <- align.time(Dittingen$sunrise, 60*10) Dittingen <- Dittingen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Dittingen, aes(x=Dittingen$timestamp)) + geom_line(aes(y=Dittingen$sr)) + geom_line(aes(y=Dittingen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Dittingen 2023", x = "Datum", y = "Zeit") pdf("Dittingen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Dittingen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Dittingen["Sonnenaufgang"] <- strftime(Dittingen$sr, format="%H:%M") Dittingen["Sonnenuntergang"] <- strftime(Dittingen$ss, format="%H:%M") write.table(Dittingen, file="Dittingen_SaSu.csv", dec=',', sep=';', row.names=FALSE)