library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Diepoldsau <- sunrise.set(47.3852825,9.6572948, "2023/01/01", timezone="MET", num.days=370) sunrise <- Diepoldsau$sunrise sunset <- Diepoldsau$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Diepoldsau["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Diepoldsau["ss"] <- as.POSIXct(sunset, format = "%H:%M") Diepoldsau["timestamp"] <- align.time(Diepoldsau$sunrise, 60*10) Diepoldsau <- Diepoldsau[c("timestamp", "sr", "ss")] locsrss <- ggplot(Diepoldsau, aes(x=Diepoldsau$timestamp)) + geom_line(aes(y=Diepoldsau$sr)) + geom_line(aes(y=Diepoldsau$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Diepoldsau 2023", x = "Datum", y = "Zeit") pdf("Diepoldsau_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Diepoldsau_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Diepoldsau["Sonnenaufgang"] <- strftime(Diepoldsau$sr, format="%H:%M") Diepoldsau["Sonnenuntergang"] <- strftime(Diepoldsau$ss, format="%H:%M") write.table(Diepoldsau, file="Diepoldsau_SaSu.csv", dec=',', sep=';', row.names=FALSE)