library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Dieburg <- sunrise.set(49.9010547,8.84449589999997, "2022/01/01", timezone="MET", num.days=370) sunrise <- Dieburg$sunrise sunset <- Dieburg$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Dieburg["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Dieburg["ss"] <- as.POSIXct(sunset, format = "%H:%M") Dieburg["timestamp"] <- align.time(Dieburg$sunrise, 60*10) Dieburg <- Dieburg[c("timestamp", "sr", "ss")] locsrss <- ggplot(Dieburg, aes(x=Dieburg$timestamp)) + geom_line(aes(y=Dieburg$sr)) + geom_line(aes(y=Dieburg$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Dieburg 2022", x = "Datum", y = "Zeit") pdf("Dieburg_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Dieburg_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Dieburg["Sonnenaufgang"] <- strftime(Dieburg$sr, format="%H:%M") Dieburg["Sonnenuntergang"] <- strftime(Dieburg$ss, format="%H:%M") write.table(Dieburg, file="Dieburg_SaSu.csv", dec=',', sep=';', row.names=FALSE)