library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_22301 <- sunrise.set(53.5831749,10.0061481, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_22301$sunrise sunset <- De_22301$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_22301["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_22301["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_22301["timestamp"] <- align.time(De_22301$sunrise, 60*10) De_22301 <- De_22301[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_22301, aes(x=De_22301$timestamp)) + geom_line(aes(y=De_22301$sr)) + geom_line(aes(y=De_22301$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_22301 2023", x = "Datum", y = "Zeit") pdf("De_22301_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_22301_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_22301["Sonnenaufgang"] <- strftime(De_22301$sr, format="%H:%M") De_22301["Sonnenuntergang"] <- strftime(De_22301$ss, format="%H:%M") write.table(De_22301, file="De_22301_SaSu.csv", dec=',', sep=';', row.names=FALSE)