library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De,_W��rrstadt <- sunrise.set(49.8423554,8.116063599999961, "2023/01/01", timezone="MET", num.days=370) sunrise <- De,_W��rrstadt$sunrise sunset <- De,_W��rrstadt$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De,_W��rrstadt["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De,_W��rrstadt["ss"] <- as.POSIXct(sunset, format = "%H:%M") De,_W��rrstadt["timestamp"] <- align.time(De,_W��rrstadt$sunrise, 60*10) De,_W��rrstadt <- De,_W��rrstadt[c("timestamp", "sr", "ss")] locsrss <- ggplot(De,_W��rrstadt, aes(x=De,_W��rrstadt$timestamp)) + geom_line(aes(y=De,_W��rrstadt$sr)) + geom_line(aes(y=De,_W��rrstadt$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De,_W��rrstadt 2023", x = "Datum", y = "Zeit") pdf("De,_W��rrstadt_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De,_W��rrstadt_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De,_W��rrstadt["Sonnenaufgang"] <- strftime(De,_W��rrstadt$sr, format="%H:%M") De,_W��rrstadt["Sonnenuntergang"] <- strftime(De,_W��rrstadt$ss, format="%H:%M") write.table(De,_W��rrstadt, file="De,_W��rrstadt_SaSu.csv", dec=',', sep=';', row.names=FALSE)