library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_goppeln <- sunrise.set(50.9882234,13.7578221, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_goppeln$sunrise sunset <- De_goppeln$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_goppeln["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_goppeln["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_goppeln["timestamp"] <- align.time(De_goppeln$sunrise, 60*10) De_goppeln <- De_goppeln[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_goppeln, aes(x=De_goppeln$timestamp)) + geom_line(aes(y=De_goppeln$sr)) + geom_line(aes(y=De_goppeln$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_goppeln 2023", x = "Datum", y = "Zeit") pdf("De_goppeln_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_goppeln_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_goppeln["Sonnenaufgang"] <- strftime(De_goppeln$sr, format="%H:%M") De_goppeln["Sonnenuntergang"] <- strftime(De_goppeln$ss, format="%H:%M") write.table(De_goppeln, file="De_goppeln_SaSu.csv", dec=',', sep=';', row.names=FALSE)