library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_Haselau <- sunrise.set(53.667153092010224,9.590984097239694, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_Haselau$sunrise sunset <- De_Haselau$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_Haselau["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_Haselau["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_Haselau["timestamp"] <- align.time(De_Haselau$sunrise, 60*10) De_Haselau <- De_Haselau[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_Haselau, aes(x=De_Haselau$timestamp)) + geom_line(aes(y=De_Haselau$sr)) + geom_line(aes(y=De_Haselau$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_Haselau 2023", x = "Datum", y = "Zeit") pdf("De_Haselau_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_Haselau_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_Haselau["Sonnenaufgang"] <- strftime(De_Haselau$sr, format="%H:%M") De_Haselau["Sonnenuntergang"] <- strftime(De_Haselau$ss, format="%H:%M") write.table(De_Haselau, file="De_Haselau_SaSu.csv", dec=',', sep=';', row.names=FALSE)