library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_24837 <- sunrise.set(54.45886326537355,9.85748291015625, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_24837$sunrise sunset <- De_24837$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_24837["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_24837["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_24837["timestamp"] <- align.time(De_24837$sunrise, 60*10) De_24837 <- De_24837[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_24837, aes(x=De_24837$timestamp)) + geom_line(aes(y=De_24837$sr)) + geom_line(aes(y=De_24837$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_24837 2023", x = "Datum", y = "Zeit") pdf("De_24837_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_24837_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_24837["Sonnenaufgang"] <- strftime(De_24837$sr, format="%H:%M") De_24837["Sonnenuntergang"] <- strftime(De_24837$ss, format="%H:%M") write.table(De_24837, file="De_24837_SaSu.csv", dec=',', sep=';', row.names=FALSE)