library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_23911 <- sunrise.set(53.6558524,10.8261469, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_23911$sunrise sunset <- De_23911$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_23911["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_23911["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_23911["timestamp"] <- align.time(De_23911$sunrise, 60*10) De_23911 <- De_23911[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_23911, aes(x=De_23911$timestamp)) + geom_line(aes(y=De_23911$sr)) + geom_line(aes(y=De_23911$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_23911 2023", x = "Datum", y = "Zeit") pdf("De_23911_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_23911_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_23911["Sonnenaufgang"] <- strftime(De_23911$sr, format="%H:%M") De_23911["Sonnenuntergang"] <- strftime(De_23911$ss, format="%H:%M") write.table(De_23911, file="De_23911_SaSu.csv", dec=',', sep=';', row.names=FALSE)