library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_22949 <- sunrise.set(53.6888482,10.195212099999935, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_22949$sunrise sunset <- De_22949$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_22949["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_22949["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_22949["timestamp"] <- align.time(De_22949$sunrise, 60*10) De_22949 <- De_22949[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_22949, aes(x=De_22949$timestamp)) + geom_line(aes(y=De_22949$sr)) + geom_line(aes(y=De_22949$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_22949 2023", x = "Datum", y = "Zeit") pdf("De_22949_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_22949_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_22949["Sonnenaufgang"] <- strftime(De_22949$sr, format="%H:%M") De_22949["Sonnenuntergang"] <- strftime(De_22949$ss, format="%H:%M") write.table(De_22949, file="De_22949_SaSu.csv", dec=',', sep=';', row.names=FALSE)