library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_21400 <- sunrise.set(53.2341324,10.5692674, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_21400$sunrise sunset <- De_21400$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_21400["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_21400["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_21400["timestamp"] <- align.time(De_21400$sunrise, 60*10) De_21400 <- De_21400[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_21400, aes(x=De_21400$timestamp)) + geom_line(aes(y=De_21400$sr)) + geom_line(aes(y=De_21400$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_21400 2023", x = "Datum", y = "Zeit") pdf("De_21400_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_21400_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_21400["Sonnenaufgang"] <- strftime(De_21400$sr, format="%H:%M") De_21400["Sonnenuntergang"] <- strftime(De_21400$ss, format="%H:%M") write.table(De_21400, file="De_21400_SaSu.csv", dec=',', sep=';', row.names=FALSE)