library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_14778 <- sunrise.set(52.27908133602108,12.597198486328125, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_14778$sunrise sunset <- De_14778$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_14778["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_14778["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_14778["timestamp"] <- align.time(De_14778$sunrise, 60*10) De_14778 <- De_14778[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_14778, aes(x=De_14778$timestamp)) + geom_line(aes(y=De_14778$sr)) + geom_line(aes(y=De_14778$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_14778 2023", x = "Datum", y = "Zeit") pdf("De_14778_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_14778_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_14778["Sonnenaufgang"] <- strftime(De_14778$sr, format="%H:%M") De_14778["Sonnenuntergang"] <- strftime(De_14778$ss, format="%H:%M") write.table(De_14778, file="De_14778_SaSu.csv", dec=',', sep=';', row.names=FALSE)