library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_06449 <- sunrise.set(51.7793089,11.4729835, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_06449$sunrise sunset <- De_06449$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_06449["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_06449["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_06449["timestamp"] <- align.time(De_06449$sunrise, 60*10) De_06449 <- De_06449[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_06449, aes(x=De_06449$timestamp)) + geom_line(aes(y=De_06449$sr)) + geom_line(aes(y=De_06449$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_06449 2023", x = "Datum", y = "Zeit") pdf("De_06449_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_06449_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_06449["Sonnenaufgang"] <- strftime(De_06449$sr, format="%H:%M") De_06449["Sonnenuntergang"] <- strftime(De_06449$ss, format="%H:%M") write.table(De_06449, file="De_06449_SaSu.csv", dec=',', sep=';', row.names=FALSE)