library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De_04838 <- sunrise.set(51.4869004,12.6411982, "2023/01/01", timezone="MET", num.days=370) sunrise <- De_04838$sunrise sunset <- De_04838$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De_04838["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De_04838["ss"] <- as.POSIXct(sunset, format = "%H:%M") De_04838["timestamp"] <- align.time(De_04838$sunrise, 60*10) De_04838 <- De_04838[c("timestamp", "sr", "ss")] locsrss <- ggplot(De_04838, aes(x=De_04838$timestamp)) + geom_line(aes(y=De_04838$sr)) + geom_line(aes(y=De_04838$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De_04838 2023", x = "Datum", y = "Zeit") pdf("De_04838_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De_04838_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De_04838["Sonnenaufgang"] <- strftime(De_04838$sr, format="%H:%M") De_04838["Sonnenuntergang"] <- strftime(De_04838$ss, format="%H:%M") write.table(De_04838, file="De_04838_SaSu.csv", dec=',', sep=';', row.names=FALSE)