library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) De__06110 <- sunrise.set(51.468162,11.967681, "2023/01/01", timezone="MET", num.days=370) sunrise <- De__06110$sunrise sunset <- De__06110$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") De__06110["sr"] <- as.POSIXct(sunrise, format = "%H:%M") De__06110["ss"] <- as.POSIXct(sunset, format = "%H:%M") De__06110["timestamp"] <- align.time(De__06110$sunrise, 60*10) De__06110 <- De__06110[c("timestamp", "sr", "ss")] locsrss <- ggplot(De__06110, aes(x=De__06110$timestamp)) + geom_line(aes(y=De__06110$sr)) + geom_line(aes(y=De__06110$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - De__06110 2023", x = "Datum", y = "Zeit") pdf("De__06110_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="De__06110_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() De__06110["Sonnenaufgang"] <- strftime(De__06110$sr, format="%H:%M") De__06110["Sonnenuntergang"] <- strftime(De__06110$ss, format="%H:%M") write.table(De__06110, file="De__06110_SaSu.csv", dec=',', sep=';', row.names=FALSE)