library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Dasing <- sunrise.set(48.3861122,11.0469892, "2022/01/01", timezone="MET", num.days=370) sunrise <- Dasing$sunrise sunset <- Dasing$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Dasing["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Dasing["ss"] <- as.POSIXct(sunset, format = "%H:%M") Dasing["timestamp"] <- align.time(Dasing$sunrise, 60*10) Dasing <- Dasing[c("timestamp", "sr", "ss")] locsrss <- ggplot(Dasing, aes(x=Dasing$timestamp)) + geom_line(aes(y=Dasing$sr)) + geom_line(aes(y=Dasing$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Dasing 2022", x = "Datum", y = "Zeit") pdf("Dasing_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Dasing_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Dasing["Sonnenaufgang"] <- strftime(Dasing$sr, format="%H:%M") Dasing["Sonnenuntergang"] <- strftime(Dasing$ss, format="%H:%M") write.table(Dasing, file="Dasing_SaSu.csv", dec=',', sep=';', row.names=FALSE)