library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Danzi <- sunrise.set(54.3520252,18.6466384, "2023/01/01", timezone="MET", num.days=370) sunrise <- Danzi$sunrise sunset <- Danzi$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Danzi["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Danzi["ss"] <- as.POSIXct(sunset, format = "%H:%M") Danzi["timestamp"] <- align.time(Danzi$sunrise, 60*10) Danzi <- Danzi[c("timestamp", "sr", "ss")] locsrss <- ggplot(Danzi, aes(x=Danzi$timestamp)) + geom_line(aes(y=Danzi$sr)) + geom_line(aes(y=Danzi$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Danzi 2023", x = "Datum", y = "Zeit") pdf("Danzi_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Danzi_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Danzi["Sonnenaufgang"] <- strftime(Danzi$sr, format="%H:%M") Danzi["Sonnenuntergang"] <- strftime(Danzi$ss, format="%H:%M") write.table(Danzi, file="Danzi_SaSu.csv", dec=',', sep=';', row.names=FALSE)