library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_Wachenheim <- sunrise.set(49.43666,8.183425, "2022/01/01", timezone="MET", num.days=370) sunrise <- DE_Wachenheim$sunrise sunset <- DE_Wachenheim$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_Wachenheim["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_Wachenheim["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_Wachenheim["timestamp"] <- align.time(DE_Wachenheim$sunrise, 60*10) DE_Wachenheim <- DE_Wachenheim[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_Wachenheim, aes(x=DE_Wachenheim$timestamp)) + geom_line(aes(y=DE_Wachenheim$sr)) + geom_line(aes(y=DE_Wachenheim$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_Wachenheim 2022", x = "Datum", y = "Zeit") pdf("DE_Wachenheim_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_Wachenheim_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_Wachenheim["Sonnenaufgang"] <- strftime(DE_Wachenheim$sr, format="%H:%M") DE_Wachenheim["Sonnenuntergang"] <- strftime(DE_Wachenheim$ss, format="%H:%M") write.table(DE_Wachenheim, file="DE_Wachenheim_SaSu.csv", dec=',', sep=';', row.names=FALSE)