library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_Koog <- sunrise.set(53.0962203,4.761840600000028, "2024/01/01", timezone="MET", num.days=370) sunrise <- DE_Koog$sunrise sunset <- DE_Koog$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_Koog["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_Koog["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_Koog["timestamp"] <- align.time(DE_Koog$sunrise, 60*10) DE_Koog <- DE_Koog[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_Koog, aes(x=DE_Koog$timestamp)) + geom_line(aes(y=DE_Koog$sr)) + geom_line(aes(y=DE_Koog$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_Koog 2024", x = "Datum", y = "Zeit") pdf("DE_Koog_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_Koog_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_Koog["Sonnenaufgang"] <- strftime(DE_Koog$sr, format="%H:%M") DE_Koog["Sonnenuntergang"] <- strftime(DE_Koog$ss, format="%H:%M") write.table(DE_Koog, file="DE_Koog_SaSu.csv", dec=',', sep=';', row.names=FALSE)