library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_25474 <- sunrise.set(53.6853207,9.913335899999992, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_25474$sunrise sunset <- DE_25474$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_25474["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_25474["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_25474["timestamp"] <- align.time(DE_25474$sunrise, 60*10) DE_25474 <- DE_25474[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_25474, aes(x=DE_25474$timestamp)) + geom_line(aes(y=DE_25474$sr)) + geom_line(aes(y=DE_25474$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_25474 2023", x = "Datum", y = "Zeit") pdf("DE_25474_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_25474_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_25474["Sonnenaufgang"] <- strftime(DE_25474$sr, format="%H:%M") DE_25474["Sonnenuntergang"] <- strftime(DE_25474$ss, format="%H:%M") write.table(DE_25474, file="DE_25474_SaSu.csv", dec=',', sep=';', row.names=FALSE)