library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_14542 <- sunrise.set(52.3647941,12.8700716, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_14542$sunrise sunset <- DE_14542$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_14542["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_14542["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_14542["timestamp"] <- align.time(DE_14542$sunrise, 60*10) DE_14542 <- DE_14542[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_14542, aes(x=DE_14542$timestamp)) + geom_line(aes(y=DE_14542$sr)) + geom_line(aes(y=DE_14542$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_14542 2023", x = "Datum", y = "Zeit") pdf("DE_14542_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_14542_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_14542["Sonnenaufgang"] <- strftime(DE_14542$sr, format="%H:%M") DE_14542["Sonnenuntergang"] <- strftime(DE_14542$ss, format="%H:%M") write.table(DE_14542, file="DE_14542_SaSu.csv", dec=',', sep=';', row.names=FALSE)