library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_12689 <- sunrise.set(52.5644951,13.5719271, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_12689$sunrise sunset <- DE_12689$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_12689["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_12689["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_12689["timestamp"] <- align.time(DE_12689$sunrise, 60*10) DE_12689 <- DE_12689[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_12689, aes(x=DE_12689$timestamp)) + geom_line(aes(y=DE_12689$sr)) + geom_line(aes(y=DE_12689$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_12689 2023", x = "Datum", y = "Zeit") pdf("DE_12689_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_12689_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_12689["Sonnenaufgang"] <- strftime(DE_12689$sr, format="%H:%M") DE_12689["Sonnenuntergang"] <- strftime(DE_12689$ss, format="%H:%M") write.table(DE_12689, file="DE_12689_SaSu.csv", dec=',', sep=';', row.names=FALSE)