library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_12209 <- sunrise.set(52.411267892549894,13.335771560668945, "2024/01/01", timezone="MET", num.days=370) sunrise <- DE_12209$sunrise sunset <- DE_12209$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_12209["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_12209["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_12209["timestamp"] <- align.time(DE_12209$sunrise, 60*10) DE_12209 <- DE_12209[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_12209, aes(x=DE_12209$timestamp)) + geom_line(aes(y=DE_12209$sr)) + geom_line(aes(y=DE_12209$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_12209 2024", x = "Datum", y = "Zeit") pdf("DE_12209_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_12209_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_12209["Sonnenaufgang"] <- strftime(DE_12209$sr, format="%H:%M") DE_12209["Sonnenuntergang"] <- strftime(DE_12209$ss, format="%H:%M") write.table(DE_12209, file="DE_12209_SaSu.csv", dec=',', sep=';', row.names=FALSE)