library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_09395 <- sunrise.set(50.67182263463033,12.885503768920898, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_09395$sunrise sunset <- DE_09395$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_09395["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_09395["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_09395["timestamp"] <- align.time(DE_09395$sunrise, 60*10) DE_09395 <- DE_09395[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_09395, aes(x=DE_09395$timestamp)) + geom_line(aes(y=DE_09395$sr)) + geom_line(aes(y=DE_09395$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_09395 2023", x = "Datum", y = "Zeit") pdf("DE_09395_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_09395_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_09395["Sonnenaufgang"] <- strftime(DE_09395$sr, format="%H:%M") DE_09395["Sonnenuntergang"] <- strftime(DE_09395$ss, format="%H:%M") write.table(DE_09395, file="DE_09395_SaSu.csv", dec=',', sep=';', row.names=FALSE)