library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_08294 <- sunrise.set(50.6155565,12.7521138, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_08294$sunrise sunset <- DE_08294$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_08294["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_08294["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_08294["timestamp"] <- align.time(DE_08294$sunrise, 60*10) DE_08294 <- DE_08294[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_08294, aes(x=DE_08294$timestamp)) + geom_line(aes(y=DE_08294$sr)) + geom_line(aes(y=DE_08294$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_08294 2023", x = "Datum", y = "Zeit") pdf("DE_08294_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_08294_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_08294["Sonnenaufgang"] <- strftime(DE_08294$sr, format="%H:%M") DE_08294["Sonnenuntergang"] <- strftime(DE_08294$ss, format="%H:%M") write.table(DE_08294, file="DE_08294_SaSu.csv", dec=',', sep=';', row.names=FALSE)