library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_07745 <- sunrise.set(50.90103005896071,11.582765579223633, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_07745$sunrise sunset <- DE_07745$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_07745["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_07745["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_07745["timestamp"] <- align.time(DE_07745$sunrise, 60*10) DE_07745 <- DE_07745[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_07745, aes(x=DE_07745$timestamp)) + geom_line(aes(y=DE_07745$sr)) + geom_line(aes(y=DE_07745$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_07745 2023", x = "Datum", y = "Zeit") pdf("DE_07745_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_07745_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_07745["Sonnenaufgang"] <- strftime(DE_07745$sr, format="%H:%M") DE_07745["Sonnenuntergang"] <- strftime(DE_07745$ss, format="%H:%M") write.table(DE_07745, file="DE_07745_SaSu.csv", dec=',', sep=';', row.names=FALSE)