library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_07427 <- sunrise.set(50.6454044,11.201361700000007, "2023/01/01", timezone="MET", num.days=370) sunrise <- DE_07427$sunrise sunset <- DE_07427$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_07427["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_07427["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_07427["timestamp"] <- align.time(DE_07427$sunrise, 60*10) DE_07427 <- DE_07427[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_07427, aes(x=DE_07427$timestamp)) + geom_line(aes(y=DE_07427$sr)) + geom_line(aes(y=DE_07427$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_07427 2023", x = "Datum", y = "Zeit") pdf("DE_07427_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_07427_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_07427["Sonnenaufgang"] <- strftime(DE_07427$sr, format="%H:%M") DE_07427["Sonnenuntergang"] <- strftime(DE_07427$ss, format="%H:%M") write.table(DE_07427, file="DE_07427_SaSu.csv", dec=',', sep=';', row.names=FALSE)