library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_06114 <- sunrise.set(51.49602657961648,11.967973709106445, "2024/01/01", timezone="MET", num.days=370) sunrise <- DE_06114$sunrise sunset <- DE_06114$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_06114["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_06114["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_06114["timestamp"] <- align.time(DE_06114$sunrise, 60*10) DE_06114 <- DE_06114[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_06114, aes(x=DE_06114$timestamp)) + geom_line(aes(y=DE_06114$sr)) + geom_line(aes(y=DE_06114$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_06114 2024", x = "Datum", y = "Zeit") pdf("DE_06114_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_06114_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_06114["Sonnenaufgang"] <- strftime(DE_06114$sr, format="%H:%M") DE_06114["Sonnenuntergang"] <- strftime(DE_06114$ss, format="%H:%M") write.table(DE_06114, file="DE_06114_SaSu.csv", dec=',', sep=';', row.names=FALSE)