library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) DE_02994 <- sunrise.set(51.3785279,14.0409418, "2024/01/01", timezone="MET", num.days=370) sunrise <- DE_02994$sunrise sunset <- DE_02994$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") DE_02994["sr"] <- as.POSIXct(sunrise, format = "%H:%M") DE_02994["ss"] <- as.POSIXct(sunset, format = "%H:%M") DE_02994["timestamp"] <- align.time(DE_02994$sunrise, 60*10) DE_02994 <- DE_02994[c("timestamp", "sr", "ss")] locsrss <- ggplot(DE_02994, aes(x=DE_02994$timestamp)) + geom_line(aes(y=DE_02994$sr)) + geom_line(aes(y=DE_02994$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - DE_02994 2024", x = "Datum", y = "Zeit") pdf("DE_02994_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="DE_02994_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() DE_02994["Sonnenaufgang"] <- strftime(DE_02994$sr, format="%H:%M") DE_02994["Sonnenuntergang"] <- strftime(DE_02994$ss, format="%H:%M") write.table(DE_02994, file="DE_02994_SaSu.csv", dec=',', sep=';', row.names=FALSE)