library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D��sseldorf <- sunrise.set(51.25353360156066,6.855338076806654, "2023/01/01", timezone="MET", num.days=370) sunrise <- D��sseldorf$sunrise sunset <- D��sseldorf$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D��sseldorf["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D��sseldorf["ss"] <- as.POSIXct(sunset, format = "%H:%M") D��sseldorf["timestamp"] <- align.time(D��sseldorf$sunrise, 60*10) D��sseldorf <- D��sseldorf[c("timestamp", "sr", "ss")] locsrss <- ggplot(D��sseldorf, aes(x=D��sseldorf$timestamp)) + geom_line(aes(y=D��sseldorf$sr)) + geom_line(aes(y=D��sseldorf$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D��sseldorf 2023", x = "Datum", y = "Zeit") pdf("D��sseldorf_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D��sseldorf_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D��sseldorf["Sonnenaufgang"] <- strftime(D��sseldorf$sr, format="%H:%M") D��sseldorf["Sonnenuntergang"] <- strftime(D��sseldorf$ss, format="%H:%M") write.table(D��sseldorf, file="D��sseldorf_SaSu.csv", dec=',', sep=';', row.names=FALSE)