library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D��ren_Birgel <- sunrise.set(50.771621,6.446128000000044, "2023/01/01", timezone="MET", num.days=370) sunrise <- D��ren_Birgel$sunrise sunset <- D��ren_Birgel$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D��ren_Birgel["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D��ren_Birgel["ss"] <- as.POSIXct(sunset, format = "%H:%M") D��ren_Birgel["timestamp"] <- align.time(D��ren_Birgel$sunrise, 60*10) D��ren_Birgel <- D��ren_Birgel[c("timestamp", "sr", "ss")] locsrss <- ggplot(D��ren_Birgel, aes(x=D��ren_Birgel$timestamp)) + geom_line(aes(y=D��ren_Birgel$sr)) + geom_line(aes(y=D��ren_Birgel$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D��ren_Birgel 2023", x = "Datum", y = "Zeit") pdf("D��ren_Birgel_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D��ren_Birgel_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D��ren_Birgel["Sonnenaufgang"] <- strftime(D��ren_Birgel$sr, format="%H:%M") D��ren_Birgel["Sonnenuntergang"] <- strftime(D��ren_Birgel$ss, format="%H:%M") write.table(D��ren_Birgel, file="D��ren_Birgel_SaSu.csv", dec=',', sep=';', row.names=FALSE)