library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D_88696 <- sunrise.set(47.81327339915106,9.173787832260132, "2023/01/01", timezone="MET", num.days=370) sunrise <- D_88696$sunrise sunset <- D_88696$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D_88696["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D_88696["ss"] <- as.POSIXct(sunset, format = "%H:%M") D_88696["timestamp"] <- align.time(D_88696$sunrise, 60*10) D_88696 <- D_88696[c("timestamp", "sr", "ss")] locsrss <- ggplot(D_88696, aes(x=D_88696$timestamp)) + geom_line(aes(y=D_88696$sr)) + geom_line(aes(y=D_88696$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D_88696 2023", x = "Datum", y = "Zeit") pdf("D_88696_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D_88696_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D_88696["Sonnenaufgang"] <- strftime(D_88696$sr, format="%H:%M") D_88696["Sonnenuntergang"] <- strftime(D_88696$ss, format="%H:%M") write.table(D_88696, file="D_88696_SaSu.csv", dec=',', sep=';', row.names=FALSE)