library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D_48268 <- sunrise.set(52.0918867,7.6520413, "2023/01/01", timezone="MET", num.days=370) sunrise <- D_48268$sunrise sunset <- D_48268$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D_48268["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D_48268["ss"] <- as.POSIXct(sunset, format = "%H:%M") D_48268["timestamp"] <- align.time(D_48268$sunrise, 60*10) D_48268 <- D_48268[c("timestamp", "sr", "ss")] locsrss <- ggplot(D_48268, aes(x=D_48268$timestamp)) + geom_line(aes(y=D_48268$sr)) + geom_line(aes(y=D_48268$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D_48268 2023", x = "Datum", y = "Zeit") pdf("D_48268_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D_48268_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D_48268["Sonnenaufgang"] <- strftime(D_48268$sr, format="%H:%M") D_48268["Sonnenuntergang"] <- strftime(D_48268$ss, format="%H:%M") write.table(D_48268, file="D_48268_SaSu.csv", dec=',', sep=';', row.names=FALSE)