library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D_46487 <- sunrise.set(51.6802862,6.5529368, "2023/01/01", timezone="MET", num.days=370) sunrise <- D_46487$sunrise sunset <- D_46487$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D_46487["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D_46487["ss"] <- as.POSIXct(sunset, format = "%H:%M") D_46487["timestamp"] <- align.time(D_46487$sunrise, 60*10) D_46487 <- D_46487[c("timestamp", "sr", "ss")] locsrss <- ggplot(D_46487, aes(x=D_46487$timestamp)) + geom_line(aes(y=D_46487$sr)) + geom_line(aes(y=D_46487$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D_46487 2023", x = "Datum", y = "Zeit") pdf("D_46487_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D_46487_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D_46487["Sonnenaufgang"] <- strftime(D_46487$sr, format="%H:%M") D_46487["Sonnenuntergang"] <- strftime(D_46487$ss, format="%H:%M") write.table(D_46487, file="D_46487_SaSu.csv", dec=',', sep=';', row.names=FALSE)