library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D_36154 <- sunrise.set(50.5113176,9.4825768, "2023/01/01", timezone="MET", num.days=370) sunrise <- D_36154$sunrise sunset <- D_36154$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D_36154["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D_36154["ss"] <- as.POSIXct(sunset, format = "%H:%M") D_36154["timestamp"] <- align.time(D_36154$sunrise, 60*10) D_36154 <- D_36154[c("timestamp", "sr", "ss")] locsrss <- ggplot(D_36154, aes(x=D_36154$timestamp)) + geom_line(aes(y=D_36154$sr)) + geom_line(aes(y=D_36154$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D_36154 2023", x = "Datum", y = "Zeit") pdf("D_36154_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D_36154_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D_36154["Sonnenaufgang"] <- strftime(D_36154$sr, format="%H:%M") D_36154["Sonnenuntergang"] <- strftime(D_36154$ss, format="%H:%M") write.table(D_36154, file="D_36154_SaSu.csv", dec=',', sep=';', row.names=FALSE)